
10/6/2023

1

GENERATION OF
PROGRAMMING LANGUAGES

GENERATION OF
PROGRAMMING LANGUAGES

Unit -I CS101 PPS @Sumit

by
Dr. Sumit Srivastava

Dept. of Computer Science & Engineering

Index

CS101 PPS @Sumit

 Programming Language

 Historical Environment

 Features of Programing Languages

 Programing Language Paradigms

 Generation of Programing Languages

 Types of Programing Language

 Implementation of Language

Computer Language

CS101 PPS @Sumit

 Language

A system of communication.

 Computer Language

Means of communication used to communicate between

people and the computer.

Computer Language

CS101 PPS @Sumit

 Difference Between Natural Language And Computer

Language

Natural language has a very large vocabulary whereas

computer languages mostly have a very limited vocabulary.

Computer Program

CS101 PPS @Sumit

 A program is a set of instructions following the rules of the

chosen language.

 Without programs, computers are useless.

 A program is like a recipe.

 It contains a list of ingredients (called variables) and a list

of directions (called statements) that tell the computer

what to do with the variables.

Programming Language

CS101 PPS @Sumit

 A vocabulary and set of grammatical rules (syntax) for

instructing a computer to perform specific tasks.

 Programming languages can be used to create computer

programs.

 The term programming language usually refers to high-

level languages, such as BASIC, C, C++, COBOL, FORTRAN,

Ada, and Pascal.

1 2

3 4

5 6

Su
m

it
Sr

iv
as

ta
va

10/6/2023

2

What is a Programming Language?

CS101 PPS @Sumit

 A tool for instructing machines

 A notation for algorithms

 A means for communication among programmers

 A tool for experimentation

 A means for controlling computer-controlled gadgets

 A means for controlling computerized devices

 A way of expressing relationships among concepts

 A means for expressing high-level designs

 All of the above!

 And more

Why Study Programming Languages?

CS101 PPS @Sumit

Helps you to:
 Increased capacity to express ideas

 Improved background for choosing appropriate languages

 Increased ability to learn new languages

 Better understanding of the significance of implementation

 Increased ability to design new languages

 choose best language for task

 design better program interfaces (and languages)

 Overall advancement of computing

Why do we Design and Evolve Languages?

CS101 PPS @Sumit

 There are many diverse applications areas
 No one language can be the best for everything

 Programmers have diverse backgrounds and skills
 No one language can be best for everybody

 Problems change
 Over the years, computers are applied in new areas and to new

problems
 Computers change

 Over the decades, hardware characteristics and tradeoffs change
 Progress happens

 Over the decades, we learn better ways to design and implement
languages

Programming Language Goals

CS101 PPS @Sumit

 Original Model:

 Computers expensive, people cheap; hand code to keep

computer busy

 Today:

 People expensive, computers cheap; write programs

efficiently and correctly

What is a language for?

CS101 PPS @Sumit

 Why do we have programming languages?

 way of thinking---way of expressing algorithms

 languages from the user's point of view

 abstraction of virtual machine---way of specifying

what you want the hardware to do without getting

down into the bits

 languages from the implementor's point of view

Study of Programming Languages

CS101 PPS @Sumit

 Design and Organization

 Syntax: How a program is written

 Semantics: What a program means

 Implementation: How a program runs

 Major Language Features

 Imperative / Applicative / Rule-based

 Sequential / Concurrent

7 8

9 10

11 12

Su
m

it
Sr

iv
as

ta
va

10/6/2023

3

Historical Environment

CS101 PPS @Sumit

Historical Environment

CS101 PPS @Sumit

 Mainframe Era

 Batch environments (through early 60’s and 70’s)

 Programs submitted to operator as a pile of punch

cards; programs were typically run over night and

output put in programmer’s bin

Historical Environment

CS101 PPS @Sumit

 Mainframe Era

 Interactive environments

 Multiple teletypes and CRT’s hooked up to single

mainframe

 Time-sharing OS (Multics) gave users time slices

 Lead to compilers with read-eval-print loops

Historical Environment

CS101 PPS @Sumit

 Personal Computing Era

 Small, cheap, powerful

 Single user, single-threaded OS (at first any way)

 Windows interfaces replaced line input

 Wide availability lead to inter-computer communications

and distributed systems

Historical Environment

CS101 PPS @Sumit

 Networking Era

 Local area networks for printing, file sharing,

application sharing

 Global network

 First called ARPANET, now called Internet

 Composed of a collection of protocols: FTP, Email

(SMTP), HTTP (HMTL), URL

Features of a Good Language

CS101 PPS @Sumit

13 14

15 16

17 18

Su
m

it
Sr

iv
as

ta
va

10/6/2023

4

What Makes A Successful Language?

CS101 PPS @Sumit

The following key characteristics:

 Simplicity and readability

 Clarity about binding

 Reliability

 Support

 Abstraction

 Orthogonality

 Efficient implementation

Features of a Good Language

CS101 PPS @Sumit

 Simplicity and Readability

• Small instruction set
– E.g., Java vs Scheme

• Simple syntax
– E.g., C/C++/Java vs Python

• Benefits:
– Ease of learning
– Ease of programming

Features of a Good Language

CS101 PPS @Sumit

 Clarity about Binding

A language element is bound to a property at the time that
property is defined for it.

So a binding is the association between an object and a
property of that object

– Examples:
• a variable and its type
• a variable and its value

– Early binding takes place at compile-time
– Late binding takes place at run time

Features of a Good Language

 Reliability

A language is reliable if:

 Program behaviour is the same on different platforms
 E.g., early versions of Fortran

 Type errors are detected
 E.g., C vs Haskell

 Semantic errors are properly trapped
 E.g., C vs C++

 Memory leaks are prevented
 E.g., C vs Java

CS101 PPS @Sumit

Features of a Good Language

 Language Support

 Accessible (public domain) compilers/interpreters

 Good texts and tutorials

 Wide community of users

 Integrated with development environments (IDEs)

CS101 PPS @Sumit

Features of a Good Language

 Abstraction in Programming

 Data

 Programmer-defined types/classes

 Class libraries

 Procedural

 Programmer-defined functions

 Standard function libraries

CS101 PPS @Sumit

19 20

21 22

23 24

Su
m

it
Sr

iv
as

ta
va

10/6/2023

5

Features of a Good Language

 Orthogonality

A language is orthogonal if its features are built upon a

small, mutually independent set of primitive operations.

 Fewer exceptional rules = conceptual simplicity

 E.g., restricting types of arguments to a function

 Trade offs with efficiency

CS101 PPS @Sumit

Features of a Good Language

 Efficient implementation
 Embedded systems

 Real-time responsiveness (e.g., navigation)
 Failures of early Ada implementations

 Web applications
 Responsiveness to users (e.g., Google search)

 Corporate database applications
 Efficient search and updating

 AI applications
 Modelling human behaviours

CS101 PPS @Sumit

Features of a Good Language

CS101 PPS @Sumit

 Simplicity – few clear constructs, each with unique meaning
 Orthogonality - every combination of features is meaningful, with

meaning given by each feature
 Flexible control constructs
 Rich data structures – allows programmer to naturally model

problem
 Clear syntax design – constructs should suggest functionality
 Support for abstraction - program data reflects problem being

solved; allows programmers to safely work locally
 Expressiveness – concise programs
 Good programming environment
 Architecture independence and portability

Language Paradigms

CS101 PPS @Sumit

PL Paradigms

CS101 PPS @Sumit

 Imperative/procedural (E.g., C, C++)

 Variables, assignment, other operators

 Functional (E.g., Lisp, Scheme, ML, Haskell, C++)

 Abstract notion of a function, based on lambda calculus

 Logic (E.g., Prolog, but can develop structures in C++)

 Based on symbolic logic (e.g., predicate calculus)

 Object-oriented (E.g., Java, Python, C++)

 Based on encapsulation of data and control together

 Generic (E.g., C++ and especially its standard library)

 Based on type abstraction and enforcement mechanisms

Imperative Languages

CS101 PPS @Sumit

 It is also called as procedural language.

 Traditional sequential programming: program statements

operate on variables.

 variable represents data in memory locations.

 characterized by variables, assignment, and loops.

 basic unit of imperative programs in the procedure or

function

 Examples: Algol, C, Pascal, Ada, FORTRAN

 Syntax: S1; S2; S3; ...

25 26

27 28

29 30

Su
m

it
Sr

iv
as

ta
va

10/6/2023

6

Object-oriented Languages

CS101 PPS @Sumit

 Classes are complex data types grouped with operations

(methods) for creating, examining, and modifying elements

(objects); subclasses include (inherit) the objects and

methods from superclasses

Object-oriented Languages

CS101 PPS @Sumit

 Classes are complex data types grouped with operations

(methods) for creating, examining, and modifying elements

(objects); subclasses include (inherit) the objects and

methods from superclasses.

 Computation is based on objects sending messages

(methods applied to arguments) to other objects

 Syntax: Varies

 Example languages: Java, C++, Smalltalk

Applicative (Functional) languages

CS101 PPS @Sumit

 Programs as functions that take arguments and return

values; arguments and returned values may be functions

 Programming consists of building the function that

computes the answer; function application and

composition main method of computation

 Syntax: P1(P2(P3 X))

 Example languages: ML, LISP, Scheme, Haskell, Miranda

Logic Programming

CS101 PPS @Sumit

 Rule-based languages

 Programs as sets of basic rules for decomposing

problem

 Computation by deduction: search, unification and

backtracking main components

 Syntax: Answer :- specification rule

 Example languages: (Prolog, Datalog, BNF Parsing)

program is declarative, it specifies what must be
true but not how to compute it.

Logic Programming

CS101 PPS @Sumit

 program is declarative, it specifies what must be true but

not how to compute it.

 logic inference the basic control

 no sequential operation

 non-deterministic: may have many solutions or none

More Language Paradigms (1)

CS101 PPS @Sumit

Declarative: state what needs computing, not how to

compute it (algorithm).

 Many 4GL, like SQL and Mathematica share this

property.

 Prolog is also declarative

31 32

33 34

35 36

Su
m

it
Sr

iv
as

ta
va

10/6/2023

7

More Language Paradigms (1)

CS101 PPS @Sumit

Concurrent or Parallel: Programming to utilize multiple

CPU or multiple threads of execution.

 Requires attention to task management, synchronization, and
data conflict

 sequence of execution may not be predictable.
 parallel features are often added to existing programming

languages.

 Examples: threads in Java, C#, and other languages. MPI

(Message Passing Interface) library for cluster and grid

computing.

Programming Language Implementation

CS101 PPS @Sumit

 Develop layers of machines, each more primitive

than the previous

 Translate between successive layers

 End at basic layer

 Ultimately hardware machine at bottom

The Onion Model of Computers

CS101 PPS @Sumit

Generations of PL

CS101 PPS @Sumit

Generations of PL

CS101 PPS @Sumit

First Generation PL

CS101 PPS @Sumit

 The first-generation languages are also called machine
languages/ 1G language.

 This language is machine-dependent.
 The machine language statements are written in binary

code (0/1 form) because the computer can understand
only binary language.

 Advantages :
1. Fast & efficient as statements are directly written in
binary language.
2. No translator is required.

 Disadvantages :
1. Difficult to learn binary codes.
2. Difficult to understand – both programs & where the
error occurred.

37 38

39 40

41 42

Su
m

it
Sr

iv
as

ta
va

10/6/2023

8

Assembly/Machine

CS101 PPS @Sumit

Systems programmers
write the assembler
(translator)

Applications programmers
use assembly language to
solve problems

Programmers divide into two groups: application programmers and systems
programmers

Second Generation PL

CS101 PPS @Sumit

 The second-generation languages are also called
assembler languages/ 2G languages.

 Assembly language contains human-readable notations
that can be further converted to machine language using
an assembler.

 Advantages :
1. It is easier to understand if compared to machine
language.
2. Modifications are easy.
3. Correction & location of errors are easy.

 Disadvantages :
1. Assembler is required.
2. This language is architecture /machine-dependent, with
a different instruction set for different machines.

Third Generation PL (HLL)

CS101 PPS @Sumit

 The third generation is also called procedural language /3 GL.

 It consists of the use of a series of English-like words that

humans can understand easily, to write instructions.

 It’s also called High-Level Programming Language.

 For execution, a program in this language needs to be

translated into machine language using a Compiler/

Interpreter.

 Examples of this type of language are C, C++, PASCAL,

FORTRAN, COBOL, etc.

Third Generation PL

CS101 PPS @Sumit

 Advantages
1. It is easy to develop, learn and understand the program.
2. As the program written in these languages are less
prone to errors they are easy to maintain.
3. The program written in these languages can be
developed in very less time as compared to the first and
second generation language.

 Disadvantages

1. Compiler/ interpreter is needed.

2. Different compilers are needed for different machines.

Third Generation PL

CS101 PPS @Sumit

High-level Languages
English-like statements made programming easier:

Systems
programmers
write translators for
high-level languages

Application
programmers
use high-level
languages to
solve problems

Fourth Generation PL (Very HLL)

CS101 PPS @Sumit

 The fourth-generation language is also called a non – procedural
language/ 4GL.

 The languages of this generation were considered as very high-
level programming languages required a lot of time and effort that
affected the productivity of a programmer.

 It were designed and developed to reduce the time, cost and effort
needed to develop different types of software applications.

 It enables users to access the database. Examples: SQL, Foxpro,
Focus, CSS, Coldfusion etc.

 These languages are also human-friendly to understand.

43 44

45 46

47 48

Su
m

it
Sr

iv
as

ta
va

10/6/2023

9

Fourth Generation PL (Very HLL)

CS101 PPS @Sumit

Advantages:
1. These programming languages allow the efficient use of data

by implementing the various database.
2. They require less time, cost and effort to develop different

types of software applications.
3. The program developed in these languages are highly portable

as compared to the programs developed in the languages of
other generation.

 Disadvantages :
1. Memory consumption is high.
2. Has poor control over Hardware.
3. Less flexible.

Forth Generation PL

CS101 PPS @Sumit

Fifth Generation PL (AI Language)

CS101 PPS @Sumit

 The fifth-generation languages are also called 5GL.

 It is based on the concept of artificial intelligence.

 It uses the concept that rather than solving a problem
algorithmically.

 An application can be built to solve it based on some
constraints, i.e., we make computers learn to solve any problem.


 Parallel Processing & superconductors are used for this type of

language to make real artificial intelligence.

 Examples: PROLOG, LISP, Mercury, OPS5 etc.

Fifth Generation PL (AI Language)

CS101 PPS @Sumit

 Advantages :

1. Machines can make decisions.

2. Programmer effort reduces to solve a problem.

3. Easier than 3GL or 4GL to learn and use.

 Disadvantages :

1. Complex and long code.

2. More resources are required & they are expensive too.

Sixth Generation PL

CS101 PPS @Sumit

 Sixth-generation programming language (6GPL) is a very high-

level programming language with extreme abstraction from the

hardware.

 It usually consists of a set of human-readable instructions that

must be analyzed by a command interpreter.

 Such languages may be domain-specific or general-purpose and

often apply natural language processing in order to function.

 It is based on No code and Visual Development.

Sixth Generation PL

CS101 PPS @Sumit

 The following program written in X++ asks a person to enter

their username and password.

 WRITE username and REQUEST user to FILL IN username.

 WRITE password and REQUEST user to FILL IN password.

 IF username and password are FILLED IN, LOG IN to system.

 User SHALL FILL IN username as text; THEN, press ENTER to GO TO password;

then, FILL IN password.

 WRITE tells the system to write text on the screen. WRITE
username outputs: username REQUEST user to FILL IN
username tells system to ask a person to type their username.

49 50

51 52

53 54

Su
m

it
Sr

iv
as

ta
va

10/6/2023

10

Computing as a Tool

CS101 PPS @Sumit

Programmer / User

Applications Programmer
(uses tools)

User with No
Computer Background

Systems Programmer
(builds tools)

Domain-Specific Programs

Types of Programming Languages

CS101 PPS @Sumit

Types of Programming Language

CS101 PPS @Sumit

• There are three types of programming language:

– Machine language (Low-level language)

– Assembly language (Low-level language)

– High-level language

• Low-level languages are closer to the language used by a

computer, while high-level languages are closer to human

languages.

Machine Language

CS101 PPS @Sumit

• The representation of a computer program which is
actually read and understood by the computer.

– A program in machine code consists of a sequence of machine
instructions.

• Instructions:
– Machine instructions are in binary code
– Instructions specify operations and memory cells involved in the

operation

Example: Address

(Operand)

Operation

(Opcode)

0000 0000 01000010

0000 0000 01010100

0000 0000 01100011

Machine Language

CS101 PPS @Sumit

Example:

 Let us say that an electric toothbrush has a processor and

main memory. The processor can rotate the

bristles left and right and can check the on/off switch.

• The machine instructions are one byte long,

and correspond to the following machine operations:

Machine Language

CS101 PPS @Sumit

• Machine languages are the only languages understood by computers.

• While easily understood by computers, machine languages are almost
impossible for humans to use because they consist entirely of numbers.

55 56

57 58

59 60

Su
m

it
Sr

iv
as

ta
va

10/6/2023

11

Machine Language

CS101 PPS @Sumit

Advantages of Machine Language

• Programs written in machine language are very fast to execute
as instructions written in Machine language are directly
understood by CPU and no translation program is required.

Limitations of Machine Language

• Machine dependent.

• Difficult to program

• Error prone.

Assembly Language

CS101 PPS @Sumit

 A program written in assembly language consists of a series of
instructions mnemonics that correspond to a stream of
executable instructions, when translated by an assembler, that
can be loaded into memory and executed.

 Assembly languages use keywords and symbols, much like
English, to form a programming language but at the same time
introduce a new problem.

 The problem is that the computer doesn't understand the
assembly code, so we need a way to convert it to machine code,
which the computer does understand.

 Assembly language programs are translated into machine
language by a program called an assembler.

Assembly Language

CS101 PPS @Sumit

• A symbolic representation of the machine language of a
specific processor.

• Is converted to machine code by an assembler.
• Usually, each line of assembly code produces one machine

instruction (One-to-one correspondence).
• Programming in assembly language is slow and error-

prone but is more efficient in terms of hardware
performance.

• Mnemonic representation of the instructions and data

Assembly Language

CS101 PPS @Sumit

 Example:

Machine language :

10110000 01100001

Assembly language :

mov a1, #061h

Meaning:

Move the hexadecimal value 61 (97 decimal) into the
processor register named "a1".

"

Assembly Language

CS101 PPS @Sumit

 Example: translate the following statement to assembly
language and machine code.

 x=y*(y+z);
 Assume x,y and z are stored in memory locations 0,1 and 2 and

there are general purpose registers called A,B,C...etc

Assembly Language Machine Code
MOV A,[1] 3e 00 01 ; A=y
MOV B,[2] 3f 00 02 ; B=z
ADD A,B 8c ; A=A+B;
MULT A,B 9f ; A=A*B

MOV [0],A 4e 00 00 ; x=A

Assembler

CS101 PPS @Sumit

 The translator program that translates an assembly
code into machine code is called an Assembler.

 One to one translation : One AL instruction is mapped
to one ML instruction.

 AL instructions are CPU specific.

Assembly Language
Program

(Source Program)
Assembler

Machine Language
Program

(Object Program)

61 62

63 64

65 66

Su
m

it
Sr

iv
as

ta
va

10/6/2023

12

Assembler

CS101 PPS @Sumit

Advantages of Assembly Language over Machine
Language
• Easier to understand and use.

• Easy to locate and correct errors.

• Easier to modify.

• No worry about addresses.

Limitations of Assembly Language
• Machine dependent.

• Knowledge of hardware required.

Machine and Assembly Languages being machine dependent
are called as Low Level Languages.

High Level Language

CS101 PPS @Sumit

• High-level languages allow us to write computer code
using instructions resembling everyday spoken language
(for example: print, if, while) which are then translated
into machine language to be executed.

• Programs written in a high-level language need to be
translated into machine language before they can be
executed.

• Some programming languages use a compiler to perform
this translation and others use an interpreter.

"

High Level Language

CS101 PPS @Sumit

• High level languages instead of being machine based are
oriented more towards the problem to be solved.

• HLL are basically symbolic languages that use English
words and/or mathematical symbols rather than
Mnemonic codes.

• HLL are known as Problem Oriented Languages.

• Every instruction written in HLL is translated into many
machine language instructions. This is one to many
translation whereas in Assembly Language there is one to
one translation.

"

High Level Language

CS101 PPS @Sumit

• Examples of High-level Language:

• ADA

• C

• C++

• JAVA

• BASIC

• COBOL

• PASCAL

• PHYTON
"

Programming Language

CS101 PPS @Sumit

 You eventually need to convert High Level program into

machine language so that the computer can understand

it.

 There are two ways to do this:

– Compile the program

– Interpret the program

Compiler

CS101 PPS @Sumit

 Compile is to transform a program written in a high- level
programming language from source code into object code.

 This can be done by using a tool called compiler.

 A compiler reads the whole source code and translates
it into a complete machine code program to perform the
required tasks which is output as a new file.

 Generally one to many translation : One HL instruction is
mapped to many ML instruction.

 HL instructions are not CPU specific but compiler is.

67 68

69 70

71 72

Su
m

it
Sr

iv
as

ta
va

10/6/2023

13

Compiler

CS101 PPS @Sumit

• The translator program that translates the instructions of
HLL into Machine Language is called Compiler.

High Level Language
Program

(Source Program)
Compiler

Machine Language
Program

(Object Program)

Interpreter

CS101 PPS @Sumit

 Interpreter is a program that executes instructions written
in a high-level language.

 An interpreter reads the source code one instruction or
line at a time, converts this line into machine code and
executes it.

 Example: JavaScript, VBScript, PHP, …

Interpreter

CS101 PPS @Sumit

• An Interpreter is a type of translator used for translating
HLL into Machine Code.

• It takes one statement of HLL and translates it into a
Machine instruction which is immediately executed.

High Level Language
Program

(Source Program)
Interpreter

Machine Language
Program

(Object Program)

Difference between Interpreter and a Compiler

CS101 PPS @Sumit

• In case of Compiler, whole source program is translated into
equivalent machine language program. The object code thus
obtained is permanently saved for future use. So, repeated
compilation is not necessary whereas in Interpreter no object code
is saved because translation and execution process alternate.

• Advantage of an Interpreter over Compiler is that it responses fast
to changes in source program.

• Interpreters are easy to write and do not require large memory
space.

• Disadvantage of interpreter over compiler is that interpreter is a
time consuming translation method because each statement must
be translated every time it is executed from source program.

Language Processors

CS101 PPS @Sumit

• Assemblers, Interpreters and Compilers are System
Software that translate a source program into object
program and are known as Language Processors.

Language processing: Interpreted

CS101 PPS @Sumit

 Interpreted: BASIC, Postscript, Scheme, Matlab

 The interpreter reads the source program and executes
each command as it reads.

 The interpreter “knows” how to perform each instruction
in the language.

Source
Program Interpreter

Execution

73 74

75 76

77 78

Su
m

it
Sr

iv
as

ta
va

10/6/2023

14

Language processing: Compiled

CS101 PPS @Sumit

 Compiled: C/C++, Pascal, Fortran
 The compiler converts source code into machine language to

create an object code file.
 A linker combines object code files and pre-compiled libraries

to produce an executable program (machine language).

Language processing: Compiled

CS101 PPS @Sumit

Source
Code Compiler

Object
Code

Linker
Executable

Program

Libraries (of
object codes)

file.c
main() {
printf("hello");
exit(0);
}

file.obj
.sym printf
FE048C7138
029845AAAF
...

printf.obj
<obj. code for
printf function>

file.exe
<hardware
instructions>

Typical Phases of a Compiler

CS101 PPS @Sumit

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Code Optimizer

Code Generator Target
Program

High Level Language

CS101 PPS @Sumit

• Advantages:

• Machine independent.

• Easy to learn and use.

• Fewer errors.

• Easier to maintain.

Comparison

CS101 PPS @Sumit

High-level LanguagesAssembly LanguageMachine Language

A program called a
compiler or interpreter
is required to convert
the program into
machine language.
Thus, it takes more
time for a computer to
execute.

A program called an
‘assembler’ is required to
convert the program
into machine language.
Thus, it takes longer to
execute than a machine
language program.

Since it is the basic
language of the
computer, it does not
require any translation,
and hence ensures
better machine
efficiency. This means
the programs run
faster.

Time to

execute

Easiest to use. Takes
less time to develop
programs and, hence,
ensures better program
efficiency.

Simpler to use than
machine language,
though instruction codes
must be memorized. It
takes
less time to develop
programs as compared to
machine language.

Needs a lot of skill, as
instructions are very
lengthy and complex.
Thus, it takes more time
to program.

Time to
develop

Programming Language

CS101 PPS @Sumit

79 80

81 82

83 84

Su
m

it
Sr

iv
as

ta
va

10/6/2023

15

Implementation of Language

CS101 PPS @Sumit

Implement a Language

CS101 PPS @Sumit

 Generally, the action of any translating program can be

divided into three phases

 Scanning

 Parsing

 Code generation

Implement a Language - Scanning

CS101 PPS @Sumit

 Scanning process: a long string of characters is broken

into tokens.

 Example: sum = a + b is broken into 5 tokens sum, =, a, +, b

 A token is the smallest meaningful unit of information.

Implement a Language - Parsing

CS101 PPS @Sumit

 Parsing: the string of tokens is transformed into a

syntactic structure.

 What happens in a compiler or interpreter is that the list

of tokens is converted to a parse tree in memory via a

complicated algorithm.

=

sum +

a b

End of Today’s Lecture

CS101 PPS @Sumit

Doubts && Queries?
THANK YOU

CS101 PPS @Sumit

A language that adopts the original simple and
elegant ideas, while eliminating the complexity

85 86

87 88

89 90

Su
m

it
Sr

iv
as

ta
va

